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ABSTRACT

The objective of this 4nvesttgation is to derive the reliability and the

associated probabilistic failure criterion for composite materials under

combined stress. In the analytical derivation, the concept of joint probability

was used and applied to the Weibull distribution function. In applications, given

the experimental measurements of the necessary statistical parameters for the

specific composite, the probabilistic criterion of the composite failure and the

reliability of the specific structure can be predicted.

Graphical representations for the joint reliability and joint failure contours

were made in two and three dimensional space for the several different sets of

statistical strength parameters to illustrate the effect of parameters on reliability.

Such understanding will enhance selection of fiber and matrix (which have their

own statistical strength parameters) and can lead to improvement in reliability of

some composite components in an aircraft structure. These reliability and

failure concepts can also be used in repair problems by selecting the proper

composite material with the appropriate statistical parameters.
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I. INTRODUCTION

A. FAILURE AND RELIABILITY OF THE COMPOSITE MATERIAL

In a composite, the matrix and reinforcement materials are combined to form

a macroscopically multiphase material . The macroscopic state gives rise to a

material which is internally redundant against local defects and damages.

[Ref.1] The ply is the basic unit in constructing composites which consists of

fibers embedded in a matrix. It is possible, therefore, to relate composite design

properties to corresponding constituent properties. As a result, it is possible to

design structural components made of fiber-composite when the design

requirements and the properties of the candidate constituent materials are

known. For high performance structures, the unidirectional fiber-matrix

composites consist of strong stiff fibers embedded in a comparatively ductile

matrix . For a rational structural design, the strength of such unidirectional ply

needs to be expressed in terms of the stress tensor. Because the ply is

composed of numerous fibers, the composite failure process is sequential,

therefore ad hoc failure criteria can not be applied to analyze the composite

failure. Furthermore, such conventional failure criteria such as Mises and

Tresca's criteria are related only to a single parameter (mean function of

failure). As a result, they can not be applied to multiple parameter functions, so

suitable general relations to represent failure contours of composite materials

are required.

In the application of a one-dimensional failure criterion, the magnitude of

stress (one component) at each spatial location of the structure is mapped into

respective points on the stress space (which is a line). If all the points within the
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domain are bounded by the tensile strength limit and the compressive strength

limit, then the entire structure may be considered safe. The reliability under

unidirectional stress, then, is the product of the reliability of each spatial

segment at the respective stress level. Under planar combined stress, the

magnitude of stresses (3 components) at each spatial location of the structure is

mapped into respective points on the six dimensional stress hyperspace. So the

stress that is interior to a domain bounded by the failure surface is safe and the

failure criterion is the analytical, graphical, or numerical representation of the

failure surface. To formulate the failure criterion, consistency of mathematical

operations can be assured by adhering to the quotient rule of tensor variables.

Historically, the formulation of many failure criteria were intuitively taken to be

based on failure mechanisms but in fact, they are phenomenctogical because

of the inconsistency between macro and microscopic failure modes.

Phenomenological failure criterion may be considered as a mathematical

model of the material transfer function relating the external excitation (stresses)

to the material's response (failure). The phenomenological mathematical

model is intended to aid experimental design to facilitate interpolation,

correlation, and retrieval of experimental observations. They do not, in general,

address the statistical variability of strength.

For a combined stress failure mechanism, when one stress component does

not affect the strength of another component, the failure is mechanistically

uncoupled; conversely when one stress component affects the strength of

another component, the failure is mechanistically coupled. In addition, if

probabilistic failure is also taken into consideration, the condition for the f'"ure

mechanism is not fixed; it depends on the stochastic combinations of the

intrinsic strengths. Under combined stress, mechanistic uncoupling with
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statistic independence can inraract to produce phenomenologically coupled

contours. On the other hand, mechanistically coupling with statistical

dependency can also produce phenomenologically coupled statistical contours.

These cases can only be distinguished by examination of both the contour in

the stress space and the statistical strength distribution in the probability space.

In any phenomenological failure criterion, the shape of the failure envelope

is never completely known until experiments are performed for all possible

combined states of stress. As a result, complete experimental determination in

two or more dimensions place an impractical demand on time and resources

because of the large number of tests needed. However, with the establishment

of a probabilistic failure criterion, this experimental failure contour can be

related to the shape parameters (the variability) in the material's principal

direction. With such supplemental information, failure contours connecting the

mean value can be established by a smaller number of samples. Therefore an

analytical model can complement the failure characterization by reducing the

required number of experimental measurements, providing bases for

comparison of the material's performance, and simplifying data and data base

reduction. In structural analysis applications, the reliability of a specific structure

under a combined stress can be determined by mapping the spatial domain into

the stress domain through stress analysis. Using the probability failure criterion,

the reliability of each spatial location corresponding to the respective stress

tensor and magnitude can be calculated. The joint reliability of the individual

spatial location can in turn be combined to predict the reliability of the entire

structure.
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B. OBJECTIVE OVERVIEW

The objective of this investigation is to derive an analytical model for

composites failure and reliability under combined stress conditions. The

Weibull distribution function was used in the probabilistic modeling. Chapter 2

presents the theoretical formulation for failure and reliability, and the resulting

equations are shown graphically in the following chapters. Chapter 3 shows

the joint reliability and linearized failure Cumulative Distribution Function (CDF)

in two and three dimens'onal space. The effects of parameters which depend

on the material were nnalyzed. Chapter 4 shows the joint failure CDF in two

and three dimensional space. The effects of material parameters were also

analyzed. In Appendix B, these probability distributions were compared to

experimental data availabe in the literature.

Finally, Chapter 5 provides conclusions and some remarks for the future

work in this area.
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II. THEORETICAL FORMULATION

A. RANDOM VARIABLES

A failure criterion for a solid prescribes the risk of failure in terms of the

causes of the failure. Mechanical catastrophic rupture is considered herein.

The effect of mechanical failure may be considered to be caused by either

stress or stain depending on the microscopic failure processes. If the

constitutive relation of the material is available, conversion between stress and

strain can be readily made and the two variables may be considered as

equivalent. Similarly, a probabilistic failure criterion which describes the

probable risk of failure can be expressed in terms of stress or strain as random

variables. Stress is selected as the random variable herein with the

understanding that the variable can be changed to strain with the appropriate

constitutive relation. We denote the probabilistic random variable as Xi, for the

scalar component of the stress tensor, and xi for the realized random variable

(i.e. the strength Xi under the respective stress component oi).

B. PROBABILISTIC CONDITIONS OF FAILURE

Under combined stress conditions, when more than one component of the

stress tensor assumes non-zero values, the effect of each component of the

stress tensor contributes to the failure of the composite. Failure of the

composite does not occur if failure by each individual stress component does

not occur.

For the composite subjected to a planar state of stress, we denote the failure

events as:
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A: Failure caused by normal stress along the fiber direction -

B: Failure caused by normal stress perpendicular to the fiber direction - 02

C: Failure caused by shear stress along the fiber direction - 06.

Then the failure of tile composites is either by A or by B or by C or by all three as

illustrated in Figure 2-1:

P(A + B + C) = P(A) + P(B) + P(C) - {P(AB) + P(BC) + P(CA)} + P(ABC)

(2-1)

As a special case, if all three events are mutually exclusive, then Equation

(2-1) can be simplified by

P(A + B + C) = P(A) + P(B) + P(C) (2-2)

A

Figure 2-1 "Joint Probability
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C. JOINT DISTRIBUTION FOR FAILURE

1. Discrete Case

In the development of the analytical expressions for the probability of

failure, we first developed the general form of the distribution for three random

variables using the notation Xi for the random variables and xi for the realized

random variables. For the planar stress, the customary notation for the range of

i = 1,2,6 is used. These general expressions are then specialized for the

combined stress cases by replacing the iealized random variables by ai.

The probability of failure under the combined influence of three random

variables can be expressed by the joint probability density function (pdf) of the

individual realized random variables:

P(X 1 = 1,X 2 = 0 2,X 6 = C6) = f (aC2,r 6) (2-3)

where f(a 1, 02, (6) > 0 and III2 f(o.1 , 02, 06) = 1. If random variable X6 is to

take on any one of the values of 061, 062, (63...., 0 6n, then the joint pdf at

some combination of X1 =a1 i, X2=o2j, and X6=06k can be expanded by

P(XI=Gli'X 2 = a'2 j X 6 = a'6k) = f(oli'o2j'O6k) (2-4)

n

P(X1 = 1iX2 = 2) f (a1i, a2 = Y f (01i2j, 6k)
k=O (2-5)

1

P(X 2 ='2j'X6 = 06k) = f(o 2 ' frsk) = IfXf( 1 li' 2 j' 06k)
i=0 (2-6)

m
P(X 1 =GVX 6 = (6k) = f (1,i'06k)= -f(01i, 2 af0 6 k)

j=0 (2-7)

and the marginal probability function can be obtained for the three random

variable case:
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m n
P(X 1 = CF) = f(0 1,) = I If (l1ii, a2f 6k)

j=Ok=O (2-8)

I n

P(x 2 a2) = f(o;2j) = I If oio 2 jook)
i=Ok=O (29)

I m
P(X= 06k) = f (ok) = ED (ai, a2j, o6k)

i=Oj=O (2-10)

which can be written

I m n

If1(a 1) = 1, If 2(02j) = 1, ,f 6(0"6k) = 1
i= j=O k=O (2-11)

1 m n

I IIf(oo , 2 jok) 1
i=Oj= Ok=O (2-12)

2. Continuous Case

If three random variables are considered, then Equation (2-4) through

(2-7) can be expanded by

P(Xl:5 < 1 X2 o 0 2' X 6 -<Y6) = F(1 'a 21 Y6 )

f j6f 2f1 f (u,v,w)dudvdw

. . . (2-13)

P(xl_< ,,X2 !X _02) = (o1o) = jJjf(u,v,w)wdu dv
-00 . (2-14)

P(X,,, X6 ! _06) = F(o,,o) = '6 'If f(u,v,w)dvdudw
.-00 0 (2-16)

and the marginal distribution can be obtained by
a

P(X1 :5 o1) = F(o1) = j '_ mfff(u,v,w)dvdwdu
-00 . (2-17)
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P(X 2  _2) = F(o 2 ) = f 'f 0 M((u,v,w)wud2-18)

P(X 6 0 6 6) = F(o 6) = (600 fT(u,v,w)dudvdw
... -(2-19)

which can be written

f__J__f(u,v,w)dudvdw=l1(-0
.. .. ..- (2-20)

From the definition of conditional probability, the conditional probability of

02 given that a1 occurs can be represented by a function form:

f(ol
2 )

ff(o2101) = (o) (2-21)

where f(o 1 , 02) = P(X 1 =01, X2 =o 2 )

a. General Case

If we consider the combined stress case, the random variables X1 ,

X2 , and X6 can be assumed to be the failure strength in the 1, 2, and 6 direction

respectively. And under a combined stress condition, the failure occurs when

either failure strength X1 , X2 , or X6 is reached. Therefore the probability of

failure under combined stress X1 and X2 can be represented by

P(X 1 + X2 ) = P(X 1 ) + P(X 2 ) - P(X 1 , X2 )

and then the above relation can be related to the joint distribution function as

follows

F(o1 , o2 ) = P(X1 -<o1 , X25 02 ) = P(X1 + X2; Xl < o 1 , X2 5 -o 2 ) (2-22)

and similarly for three random variables case.

F( 1 , o2 , o6) = P(Xl<o1 ,X2 -5o 2 ,X 6 -5o 6 ) =P(Xl+X 2 +X 6

X1 <o1 ,X2 <o2 ,X6 <o6 ) (2-23)

9



Equation (2-22) is proven in Appendix A-1 using the Weibull

distribution function for the independent case.

If the joint distribution of failure under the combined stresses of o 1 , 02,

and 0 6 is considered, the strength failure criterion of a composite is the

minimum of the failure strength X1 , X2 , and X6 , that is, at Xc = X1 X2 AX 6 . ( We

are not dealing with the minimum magnitude among X1, X2 , and X6 but rather

one value among X1 , X2 , and X6 which is less than the intrinsic failure

strengthes of 01, 02, and 06 becomes the minimum value here.) So

F(o,o 2 ,) = P{X c = X1 A X2 A X6over( 1 l, o 2 ,o 6 )}

where ( 01, 02, G6 ) is the three dimensional stress domain. If the relations

among G1 , 02 and a6 are given by

01 =1B 1 2 o 2 , o2 = B26 G6 , o6 = B6 1 G1  (2-24)

then, the joint pdf P(X 1 <_ 1 o,X2<o2 ,X6 <o 6 ) can be evaluated. If 06 is assumed

to be zero, then the joint probability functions, P(X 1<o 1 ,X2 _o2) can be divided

into two probability distribution functions corresponding to S1 and S2 domains

as shown in Figure 2-2. The domain S1 is applied for the case when

[X1 / X2 < B12 and X1 < o1] which the composite fails by failure strenth

X2 = X1AX2 , whereas the domain S2 is applied for the case when

[X1 /X2 - B1 2 and X2  021 which the composite fails by failure strength

X1 = Xl ^ X2 . So the following joint relation can be obtained:

P(X 1 !_ 0 1, X2 < 02) = P(X 1/X2 ! B12 and X1 <_ ol)

+ P(X 1/X2 > B12 and X2  02) (2-25)

Applying Equation (2-25) to domains described in Figure 2-2, then

P(X5 olX 2 02) = f, (u, v)dudv + f ,(u,v)dudv

10



Using end limits and considering P(X 1 _<a 1 ,X2 :c 2 ) = F(al,a 2 ),then the joint

distribution function for the general case can be represented by

F(a,1 CF2) =f SNf'f(u,v)dvdu + J 13 f (u,v)dudv
0 B12  o 1 (2-26)

where u and v are dummy variables.

X2

"I2U

Figure 2-2 Domains For The Joint Distribution

b. Specific Case

The joint probability of the bi-axial case (Equation (2-25)) can be

expanded for specific cases.

(1) lndeoendent Case. If the events X1 = a, and X2 = G2 are

independent for all a1 and 02, then the joint probability can be represented by

11



P(XI=o1 ,X2=o 2) = P(X 1 =0 1) P(X 2 =o2 )

or equivalently

f(o1 ,2) = f1 (ol) f2 (o2 ) (2-27)

If three independent random variables are considered:

P(X 1 =01 ,X2 =0 2 ,X6 =o 6 ) = P(X 1 =01) P(X2 =0 2) P(X 6=o 6 )

f(o1 ,o2,06) = f(ol) f(o2 ) f(o6 ) (2-28)

Similarly, if the random variable X1 and X2 are independent for all

01 and 02:

P(X 1 <51 ,X2 <o 2 ) = P(Xl <01 ) P(X 2 <o 2 )

or equivalently:

F(o 1 ,02) = F1 (01) F2 (o2 ) (2-29)

where F1 (0l) and F2 (o2 ) are the marginal distribution functions of X1 and X2

respectively. Similarly, for the three independent random variable case:

F(X1!< 1 ,X2 <o 2 ,X6<o 6 ) = P(X1 -<1 ) P(X2O 2) P(X6 <o 6 )

or equivalently

F(o 1 , 2 ,o6 ) = F(ol) F(02) F(o6 ) (2-30)

So the joint distribution function can be expanded a step further for

the independent case.

From Equation (2-26) (refer to Appendix A-2)

F(0 1 0 2) = F1(01) + F2(" 2 )
a a

-JO 'fl(u)F2 B-2du - 0 2f (v)F 1(B 12v)dv
0 ( 12 0(2-31 a)

Equation (2-31 a) can be further expanded by integration by parts

F(o 1 o 2) = F1(o,) + F2(o 2 ) - 2Fl(o,)F 2 (o 2 )

0 2
+.-J--oF(U) f<(.-p2u-B 1 2 f F2 (V)f1 (B 1 2v)dv

12 0 B12 0(2-31 b)

12



Comparing Equations (2-31a) and (2-31b) reveals that the

arguments of the pdf and CDF are exchanged so either Equation (2-31 a) or

(2-31b) can be used depending on simplicity of algebra.

(a) Weibull Distribution Model. If the Weibull function is applied to

the independent case, then Equation (2-31a) can be expanded by

aci a' a iSF(0,,2) G -exp - ( (' I + -expl- _

1/'( a\ 1 a 2X

f e.x J.3j exp B 2u2

o~P P1 1 JY1 J B 12P2JJ

-:2(01J)2 4 x{- B J }
-f { 2( ) ex -- -exp----1 j.u

By rearranging terms, the joint distribution function for the

Weibull model can be obtained by

F( 01 CY2):' f '01 cc 1 q)a 1ex-P,"1 B a 2 du
0 a-iP 1 2P

2 a 2 U 2

o P-2AP2 P 2 01-- 2 d (2-32)

(2) Independent And Identical Case. Equation (2-31a) can be further

expanded if the identical case is considered.

For the identical case, F(a) = F1 (a1 ) = F2 (02 ) and equivalently f(G)

= f1 (01 ) =f 2 (02 ), so expanding Equation (2-31a)

2= F(a1) + F(0 2) B t()(~)u 12 (vFB 2vd

(2-33a)

and similarly Equation (2-31b) can be represented by

13



F(a1 ,a2) = F(a 1 ) + F(o 2) - 2 F(o 1 ) F(a 2 )

+ B-2" 01-u) tB U )du +B12fo2 --v'f (B 12 d

( 1210 ~12 0 (2-33b)

For the special case when B12 = 1, 0 = 01 = 02 and Equations

(2-33a) and (2-33b) can be simplified to

F(, G 2) = 2F(a) - 2 ff (u)F(u)du
0

and rearranging finally gives the joint distribution function for independent and

identical case.(refer to Appendix A-3):

F(a 1 ,02) = 2 F(a) - (F(o))2  (2-34)

Equations (2-33a) and (2-33b) can be evaluated for specific

models such as the Weibull distribution function.

(a) Weibull Distribution Model. For the Weibull model, the pdf (f(x))

and cumulative density function (CDF: F(x)) can be represented by

f(0) = exp } (2-35)

F() = 1- exi - (P)} (2-36)

Substituting Equation (2-35) and (2-36) into Equation (2-33a)

Fo( o110 2) [ex4-( ( )a}] +[l-ex4-(-))°
0 aV u -1

- f) exp{ -")}[1 - exp{- (B-1 2 }' u

2 a-1f
-1 e4e{ (-ex - D

14



By integrating and rearranging the terms, the joint distribution function of the

Weibull model under bi-axial siress a1 and 02 can be simplified to (refer to

Appendix A-4)

F(0a102) = 1 - ex - - (2-37)

D. MEAN FOR THE JOINT DISTRIBUTIONS

1. General Case

If X1 and X2 are two continuous random variables having the joint

probability density function f(Y 1 , a2 ), the mean or expectation of X1 and X2 can

be obtained by:

I..E.. 1) =Jf_0f_ f ( 2 )dalda 2  (2-38a)

0W 00

4 = E(G 2) = J_J __ 2 f(a,'1 a 2 )da 1da 2  (2-39a)

Considering the stress, the bottom limits of the double integration are

changed, so Equations (2-38a) and (2-39a) can be expanded specifically for

the stress case which we are concerned with

--- E(0) i 0 lf (
1

' 0
2 )d 1 d 2  (2-38b)

g2 EC2) =f 0'2 f(al 2) d 1 da2 (2-39b)

Similarly if three random variables are considered, then Equations

(2-38b) and (2-39b) can be expanded by
00 00 0

0 0 0 (2-40b)
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00 w000

=f (2-40c)

2..Specific C

a. Independent Case

If the random variables X1 and X2 are independent for all a1 and a 2

f(ol ,02) = fl (01 ) f2(G2 )

and Equations (2-38b) and (2-39b) can be expanded by

f0faf 1G 1 f20 2 dad 2  (2-41 a)

1 f(2-42a)

taking the integral and noting that F1 () = F2 (-) = 1, then Equations (2-41a)

and (2-42a) can be simplified to

"11 = fo0tf 1(a1)d° 1  (2-41 b)

4.2 = f 0 2 f 2 ( a 2)da2 (2-42b)

Similarly, for the three random variable case:

f.J Jof 0G1 f 1(ol)f 2(" 2 )f 6 (o 6)do do 2d 6 = f 0 af ((a)do,

(2-43a)
w00 00

g2= fJ0  0 a 2f 1(" 1) f2(o'2)f 6 (o6 )do d 2 do6 =f0 Y2 f 2( G2 )daF2

(2-43b)
0 00000

46= f 0 0o a6 f 1 (o)f 2(o 2) f 6 (o 6)dldo 2 da 6 = fJ0a 6 f 6 ( G6 )do 6

(2-43c)

Observing Equations (2-41 b) through (2-43c), it can be concluded

16



that the mean values of the random variables X1, X2 , and X6 are dependent

only on their corresponding probability density functions.

b. Independent And Identical Case

For the independent and identical case, the joint probability function

can be obtained by

f(a 1 ,a 2 ,a 6) = f(a1) f(a 2 ) f(a6 )

where f(a) = fl (a) = f2 (o) = f6 (0)

Applying these relations to Equations (2-41b) through (2-43c), the

mean values for the joint distributions can be simplified for the independent and

identical case.

gl = = fJaf(a)da

0 (2-44)

(1)Weibull Distribution Model. If the Weibull probability function is

considered, Equation (2-44) can be expanded as follows

I' f 0 X ex- '

letting = (a/3)a, then
1

g=J y-"exp(-y)dy

0

Using the definition of the Gamma function, we finally get the

mean function:

S= p1-(1 + 1 ) (2-45)

E. JOINT RELIABILITY

1. Concept Of Reliability

The common notion of reliability is the confidence in the ability of a

17



device to perform adequately over a range of specified conditions. Such

qualitative measurement of confidence and adequacy can be quantitatively

calculated by probability. In the formalism of probability, the conditions over

which the device is intended to perform is defined as the random variable X:

and the probability over the range of conditions is defined as the CDF over the

range that the random variable experiences in service. That is, over the sample

space a experienced in service, the probability of failure is defined by the CDF

over the sample space:

P(X5 <o) = F(a)

Since reliability is the compliment of failure, it is defined by

R(a) = 1 - F(o) (2-46)

2. Joint Reliabiity

If X1 and X2 are two random variable, then the joint reliability of X1 and

X2 can be defined by

R(al ,02) = 1 - P(X 1 -<1 ,X2 -<2 ) (2-47)

or equivalently for the three random variable case

R(al,02,a 6) = 1 - P(X 1 l 1 ,X2 <o 2 ,X6 <c 6 )

For the discrete case, equation (2-47) can be expanded by:

P(o',,oa2) =1 I Lf (UV)

U -5a1V!-a2 (2-48)
PI° '° 6 -- I -- C, Y I_f (u'v' w )

U V<a 2W SO-6

If the continuous case is considered, the joint reliability function of X1 and

X2 is defined by

P( 11 2 ) =1-f 1 f f(uv)dvdu

and from Equation (2-49) the marginal reliability function can be obtained:

18



a

R1(a1) 1 1- f Jf (u,v)dvdu.... (2-50a)
- 00

R2(G2)= 1 - J fJ'f(uv)dudv (2-50b)

If the three random variable cases are considered, Equation (2-50a) and

(2-50b) can be further expanded:

R(Y = 1 -f__.f__Jff(u,v,w)dvdwdu (.1aa.. .. .. - (2-51 a)

JY 2 00  M~~~~lAr,~
R2 (g 2) = 1- f 'f fb)(u,v,w)dwdudv...... (2-51 b)

a

f 6 ~ vw~uddR6(g..) - f f (2-51c)

R1 (a 1 ), R2 (a2 ), and R6 (G6) are also equivalent to the one dimensional

reliability function which are defined by

Rl((Y,) = 1 - f" f,1(u)d u
_( 1 (2-52a)

2

R2(2) = 1 - J f 2(u)du (2-52b)

R6 (a 6 ) = 1- f f 6(u)du (2-52c)

a. General Case

The general equations for reliabiy can now be applied to the

calculation of the mechanical strength reliability of composites under combined

stresses by specifying the random variables as Xi and the realized random

variables as ai. The joint reliability under combined stress al and G2 can be

obtained by

F( (Tpa 2) = 1 - F(01,02) = 1 - P{X= X., A x 2over( a l, a 2)}
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where X1 and X2 are the failure strength in each coordinate(see Figure 2-2).

Noting that the joint pdf under combined stress ol and G2 is

represented by the double integration of f(o 1 , G2) over the domains S1 and S2

and that the double integration of f(o 1 , 02) over the domain S3 (see Figure 2-2)

is defined as the joint reliability under combined stress a1 and 02, then the

following relation can be obtained:

P(Yll += 1 - F( = o f[f (u, v)dudv2 VG2 CF2 a1 (2-53)

Comparing Equation (2-53) to Equation (2-26), Equation (2-53) can

be represented in another form:

R(321 f ' f(u,v)dvdu +f 2 ff(uv)dudv
0 B 0 B v

12 12 (2-54)

If the joint reliability under three combined stress is considered,

equation (2-53) can be expanded by

k a CF 1 al a 06)f f (u,v,w)dudvdw
02 1 (2-55)

b. Specific Case

The joint reliability of bi-axial stress case can be further expanded for

the soecific case as in the probability distribution function.

(1) Independent Case. If the random variable X1 and X2 are

independent for all a1 and 02, then Equation (2-53) can be expanded:

P( 011a2) = f a2 lf 1u f 2( v)dudv ( - 62 1 (2-56)

After integration, Equation (2-56) can be simplified to (refer to

Appendix A-5)

R(ol,O 2 ) = {1-F 1 (01)}{1-F 2 (o2 )) (2-57)

noting that R1 (ol) = 1-F 1 (Ol) and R2 (o2) = 1-F2 (02 )
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R(aI ,a2 ) = R1 (a1 ) R2(G2) (2-58)

For the three random variable case, Equations (2-56), (2-57), and

(2-58) can be obtained by

P(~~~ 01 or2 Y faffaf 1(U) f2(v) f6 (w)dudvdw
6 2 1

= (1-F1 ) (1-F2 ) (1-F6)

= R1 (al) R2 (02 ) R6 (06 ) (2-59)

In application to a composite, if the probability of failure model (Fi)

is known, then the reliability of the composite can be calculated. The probability

of failure model can be inferred from the physical consideration of the failure

processes.

When a filament composite is loaded along the fiber direction,

local failure begins when the weakest fiber fails. The load carried by the broken

fiber is transferred to the neighboring fibers. Upon additional increase in load,

additional fibers fail, leading to the increase of failure sites distributed over the

composite. The higher the load, the higher the density of such failure sites and

the higher the probability of clustering. The spatial clustering of the fiber failure

sites leads to stress concentration and ultimately causes the catastrophic failure

of the composite. Harlow and Phoenix investigated the probabilistic modeling

of the above sequential failure events and arrived at a modified weakest link

model in which the link of the chain is a bundle. [Ref. 2] For a limited range of

the random variable, it can be approximated by the two parameter Weibull

model [Ref. 3]:

When a filament composite is loaded perpendicular to the fiber
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direction, the failure mode is similar to that described by classical fracture

mechanics. The exception is that for a composite, all inherent flaws are not

randomly oriented, but are aligned with and propagate along the fiber. In such

a case, the largest crack dominates and it is effectively a weakest link process

over the physical volume. On these physical grounds we may use the Weibull

model for both the transverse strength and shear strength:

a2

P(ao2) = exp ((72

( a6) =ex p{ (Y6}

Equation (2-57) can be specified for these Weibull distribution

functions:

P(o 1 2) =exP -}
(2-6C)

equivalently for the three random variable case:

a1 
) 2 

) 61P 01 (Y2 'a 6 ) =exp - -Pj 1 sJ f(2-61)
If we note F(a 1 , (02) = 1 - R(al, 02), then the joint distribution

function obtained in Equation (2-32) can be simplified by

F(a 1 a2) e - - 0
(2-62)

F(a 1 ,a( 2
' '

6) = 1 - exp{- - --1 -~ -ii(-3
P 1 (2 56(2-63)

(2) Independent And Identical Case. If the random variables X1 and

X2 are independent for all (01 and 02 and the probability distribution function for
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each random variable is the same, then F(o) = F1 (al) = F2 (o2 ). Similarly R(a) =

R1 (01) = R2 (02 ) and the Equation (2-58) can be simplified to

R(al, 02) = R(ol) R(a2 ) (2-64)

As a specific case, if the Weibull distribution function is

considered, Equation (2-64) can be further expanded:

0(o ,o2) -ex= {-(a a} (2-65)

For B1 2 = 1, then o = 01 02 and the joint reliability function for

Weibull model is obtained.

F<(Y,o) = exp - 2( -)a,i , 2 } (2-66)

For the three random variable case, Equations (2-64) through

(2-66) can be expanded by

R(a 1 ,02,06) = R(o 1 ) R(o2 ) R(G6) (2-67)

D I' (09a21a6 e tG2 a (6 )a

R0,0 2 0) -ex -p ) T) P (2-68)

P~~,a, c) = exp - 3 l'
R , ex p J (2-69)
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Ill. GEOMETRIC REPRESENTATION OF JOINT RELIABILITY UNDER

COMBINED STRESS

A. BACKGROUND FOR GEOMETRIC REPRESENTATION

CDF and pdf are useful functions which contain all the relevant information

about the statistical properties of a random variable, in our case, the strength of

composite. These functions are required in reliability analysis, design,

acceptance, maintenance, and operational logistics.

In applications, in order to map out the statistical failure surface even for the

bivariate case (the biaxial combined stress), an exceedingly large number of

experiments are required. A large number of experiments are frequently

impractical due to economic and time constrains and other considerations.

Therefore, it is important to visualize the shape of the failure surface in order to

narrow the range of experiments to be focused on the critical regions in the

stress domain.

In this chapter we present the geometric representations for the reliability

functions for the independent case derived in Chapter II. The graphical

presentation is based on the probability plots and the failure surface

representations, which were also investigated. Examination of these graphical

representations will shed light on the appropriate experiments necessary for the

identification of whether the failure processes are independent or dependent.

When the independence is established, the entire failure surface (all

permutations and combinations of combined stress case) can be calculated

from the uniaxial strength statistics.
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B. JOINT RELIABILITY FUNCTION

1.- Two Random Variable Case

From Equations (2-56) and (2-66), the reliability function for the Weibull

Mode' cr'. be obtained by

R((;) = exp-
I k~P}J(3-1)

RELIABILITY

1.2-

0.6 - __ _ -_ _ --- --------- 1 alpha=3

1 * alpha=25

0.3 -

0.0-
0 12

sigma/bela

Figure 3-1 . 7:fecls CAf t In Reliability
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If we consider a/13 as a normalized variable, then the reliability function

versus oI/3 can be plotted for various values of a. Figure 3-1 shows two different

graphes for large and small values of cz. For the small values of cc, the graph

shows a relatively smooth curve, but as a increases, the graph approaches to

the step function and these relations can be further expanded for the joint

reliability problem. If the independent combined stress cases are considered,

the joint reliability of the composite under combined stress can be obtained from

Equation (2-58).

R(aI ,a2) = R1 (al) R2(G2)

Expanding R(al, 02)
a

R( )= exp{-) ei 2 (2-60)

where

R(al) = exp - }R(2) exp P2

If we assume that

11 = V12 32  (3-2)

and noting that

01 = B12 02

then the joint reliability for the independent case can be represented by

R(cl ,02) = R1 (Cl) R2(G2 )

{x Vexp{ 2 01
=exp 12 1 (3-3)

If we further assume C12 =V12 /B12, then Equation (3-3) can be simplified

by
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R( , 2 ) =Pex - ex[ {C} (3-4)

From Equation (3-4), the reliability functions R1 (0 l ) and R2 (02 ) can be

pkiled independently in two dimensional space provided that c 1 , o2 , and C1 2

are given. Then R1(o 1 ) and R2 (02 ) are combined to yield the joint reliability

function of R(a 1 ,02) as shown Figure 3-2. Observing the Figure 3-2, it can be

noted that the joint reliability is affected by the smaller value between R1 (01)

and R2 (02 ) for a given value of a1/P31, that is, the value of the joint reliability is

always close to the smaller value between R1 (al) and R2 (o2 ). When the values

of both R1 (a 1) and R2 (G2 ) are close to '1' for the specific range of a, /P1 , the

value of the joint reliability is also close to 1, but as either R1 (a l ) or R2 (o2 )

decreases, the joint reliability also decrease depending on the smaller value

between R1 and R2 . We can also observe the effect of C12 for the given a 1 and

a2"

As shown in Figures 3-2a and 7 -2c, the R2 (o2 ) shifts to the right from the

R1 (a1) as C1 2 decreases from '1' whereas R2 (o2 ) shifts to the left as C1 2

increases from '1' while R1 (al) remains constant. So, the joint reliability follows

the smaller function between R1 (a l ) and R2 (02 ) and appears to almost overlap

when C12 is far from '1'. As the value of C12 approaches to '1', the values of

R1 (a1) and R2 (o2 ) approach each other and when C 1 2=1, R1 (a1) and R2 (a2 )

cross each other at 01/P1=1. The joint reliability function exists to the left of

R1 (a1) and R2 (o2 ) and has a weaker reliability than Rl (a 1) or R2 (G2 ). So the

joint reliability is always less than other uni-axial directional reliabilities.
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RELIABILITY (Al =5,A2=3,C12=O.5)

E -__ ------ N__1_ m R1
0) 0.6# R2

+ R

0 123

sigmal/betal

Figure 3-2a Reliability Vs aH/o3 , (C12=0.5)
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RELIABILITY (Al =5,A2=3,C1 2=1)

T * R2

0.3 0

0 12

sigmal/betal

Figure 3-2b :Reliability Vs a'I3, (C12=1)
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RELIABILITY (Al =5,A2=3,Cl 2=5)

009

0 R2

0 12

sigmal1/betal

Figure 3-2c :Reliability Vs a'IPl (Ci12=5)
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Figure 3-3 shows the joint reliability in three dimensional space for

different values of C1 2 and for fixed a1 and (x2.

~AI =5,A2=3

Figure 3-3 Reliability In 3-D Space (axl=5, "2=3)
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Here we introduce the concept of linearized failure CDF to show the

effect of the joint failure CDF at the tail area.

To get the linearized failure CDF, denoted by F*(a), use logarithmic

algebra. If we take the logarithm of R1 (a 1 ) and note that R1 (a1 ) = 1-Fl (al),

then
a

I n{R (a1) } = I n{1 - F1(a 1)} = - (3-5)

Multiplying both side by (-1) and taking the logarithm again, the

linearized failure CDF can then be defined as

F 1*(c 1 ) = i{L- ln{R(3)}l (3-6)

Substituting Equation (3-5) into Equation (3-6), then

F1* ( ) = (3-7)

By the same way, linearized failure CDF corresponding to a 2 can be

obtained:

F2"*(U2) = cc2ln(2) + n }
(3-8)

Comparing Equation (3-8) to (3-7), it can be noted that F2 *( 2 ) is

vertically shifted and rotated when compared to F1 "*(a1). This result is

represented in Figure 3-4.

Similarly F*(al ,a 2 ) can be obtained by

F*(ac 2 ) -I + C12 j
F* (a C 2 =InP1 P 1(3-9)

Comparing Equation (3-9) to (3-7) and (3-8), it can be noted that

F*(al,0 2 ) is no longer a linear relation in terms of ln(al/01). Figures 3-4a, 3-4b,
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and 3-4c show the linearized failure CDF for different values of C1 2. As shown

in these graphs, F2 "(( 2 ) is shifted upward and rotated clockwise as C1 2

increases and this causes a higher probability of failure. The joint linearized

failure CDF, F*(j1,G2 ), then follows the higher value between F1 *(G1 ) and

F2 *(y 2 ) and does not show the linear line, especially near the area where

F1*(a,) and F2*(cy2) intersect each other. So we can observe that , as the value

of C1 2 increases for the specified ox1 and ox2 , F2 *(02 ) shifts upward and rotates

clockwise causing the intersection between F1 *(l) and F2*(G2) to go

downward, or in other words creating a higher probability of failure.

LINEARIZED FAILURE CDF
(Al =5,A2=3,Cl 2=0.5)

10-

Cu-10 - - ----- ----

E
0 F2*u_;" l+ F"

-3-
-30-

-51 I I

-10 -6 -2 2
In(sigmal/betal)

Figure 3-4a : Linearized Failure CDF (C12=0.5)
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LINEARIZED FAILURE COF
(Al =5,A2=3,Cl 2=1)

10*

T~ F2*
+ F*

LL __ _ _30 _ _ _ _ _ _ _

-50-
-10 -6 -22

In(sig mal /beta 1)

Figure 3-4b :Linearized Failure CDF (C1 2=1)
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LINEARIZED FAILURE CDF
(Al =5,A2=3,Cl 2=5)

E m F1*
10 F2*
+ F*

LL -30-eoe

-50-1_ _ _

-10 -6 -22

In(sigmal/betal)

Figure 3-4c :Linearized Failure CDF (C1 2=5)
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As a special case, if a=(x1=cy', then the joint reliability function and

Equations (3-7) through (3-9) can be simplified by

=(il exp{ )'(i + 31

aa

= (3-13)

RELIABILITY (Al =A2=5,C12=O.5)

* R2

0 12 3

sigmalI/betal

Figure 3-5a :Reliability Vs a1 /Ol1Qx1=ax2=5)
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RELIABILITY (Al =A2=15,C12=O.5)

1.2-

0.9 - ---

E 0.___ o__ _ _ _ _ Ri
I * R2
I~ +R

0 .3 - --- --- ------

0.0*1
0 12 3

sigmal /betal

Figure 3-5b :Reliability Vs oi,/P3 (al=Oc2=15)
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Comparing Equations (3-12) and (3-13) to Equation (3-10), it can be

noted that F2 *(o2) is shifted vertically by a In(v12 / B1 2). F*(Gl ,(2) is also shifted

vertically by In{1 +(v1 2/B1 2)) regardless of values of C1 2. Figures 3-5 though

3-7 show the reliability in two and three dimensional space and linearized

failure CDF in two dimensional space for a = c(x = ax2 .

AI=A2=5

Figure 3-6a Joint Reliability In 3-D (ac1=c 2=5)
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Figure 3-6b Joint Reliability In 3-D (cx1=ax2=15)
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As shown in Figure 3-7, each failure CDF is parallel to each other and

the joint linearized failure CDF almost coincides with F1*( vl) or F2"(a2),

depending on the value of C12, and is parallel to both F1*(l) and F2*(G2 ). So

in the physical sense, C1 2 is very important for estimating the failure and

reliability. The joint reliability is affected by the weakest reliability function and

this is true for the joint linearized failure CDF.

LINEARIZED FAILURE CDF
(Al =A2=5,C1 2=0.5)

10-

0 *

-10-

E __ _ _ _ __ _ _ __ _ _*

-20-F"-, * F2*

L + F*
. -30 _ __ __ _

-40 --- -- ......... . ..

-50 - I

-10 -6 -2 2

In(sigmal/betal)

Figure 3-7a : Linearized Failure CDF (c(1=L 2=5)
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LINEARIZED FAILURE CDF
(Al =A2=l 5,C1 2=0.5)

100 1*

0-

____ ___ ___ ___ _______ ___ ___o F1*

* F2*

_10 -6 -2 2

In(sigmal/belal)

Figure 3-7b: Linearized Failure ODE ((a1=a 2=I5)
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2. Three Random Variable Case

If the three random variable case is considered, the joint reliability under

the combined stress can be obtained from the Equation (2-79):

R(aI, a2 , a 6 )= R1 ( 1 ) R2 (a2 ) R6 ( 6 )

Expanding this equation for the Weibull model:

P( yl ( 2 C 6) ea a 1 2)2 Y)a6~

(T2 T (2-61)

RELIABILITY (A1=25,A2=5,A6=3)
(Cl 2=0.5,C1 6=1)

1.2-

M 1 [ R1
E - - -

o.6- R2
. R3

rr+ R

0.3

0.0
0 12 3

sigmal/betal

Figure 3-8a : Reliability Vs a1 /131 (C1 2=0.5, C16=1)
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RELIABILITY (Al =25,A2=5,A6=3)
(Cl 2=1,Cl 6=1)

1 .2-

0.9 - ---

E c3_ __ _ _ _ _ _ _ Ri
0.6 - --------- R 2

a R3

0.0*
0 123

sigmal/betal

Figure 3-8b Reliability Vs a,/31 (Ci 2=016=1)
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If we assume that

01 = V1 2 0 2, P2 =V 16 06  (3-14)

and noting that

a= B1 2 02 , 1Y1 = B1 6 aY6  (3-15)

where

B -'-B V 1V
12B21' 16 B 6 1' 12 V 21' 16 V61(1)

then the joint reliability for the independent case can be represented by

Al =25,A2=5,A6=3

Figure 3-9 Joint Reliability In 3-D (C16=1)
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R(c 1 ,a2 ,a 6)=R 1 (ci )R2 (a2)R6 (cF6 )

: - e} - -exp{ t
=exp (Y 1 exp (C ' jexp-_(C1

=ep ( 0}1 Pexp 0C1 2-- I lx iC 1  (3-17)

where

V12 V16

12 B 12 ' 16 B16  (3-18)

Furthermore, if 012 and C16 are given, then 026 can be calculated

using the chain rule:

o V 26  G6 P 2  '1 Y6 f3 2 P1 B12 V 16  016
26 B 2 Br C12

26 26 [Y1 P12 16 12 (3-19)
So, if a 1 , cc2, a 6 , C1 2 , and C16 are given, then the joint reliability

function, R(a1 ,a2 ,a6 ), can be plotted in two dimensional space with respect to

al/01. Here we can also introduce the concept of linearized failure CDF to show

the effect of the failure CDF at the tail area. To get the linearized failure CDF,

denoted by F*(a), use the same procedure described in Equations (3-5) through

(3-9), then

F; (<,):<, N(3-7)

F2* ( 2) a2{n(C, +In@- )} (3-8)

F6 (a 6 ) 6 { n(C 16) +i (3-20)
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C ' , ( C l a 6( 3 -2 1 )

So it can be noted that the joint linearized failure CDF, F*(GYl 'y2'C6) does

not show a linear relation in terms of ln(cvl431) except when (xl=ax2 =x 6 , instead

it is affected by F1 *(Yl ), F2*(Gy2), and F6 *(cy 6). That is to say, F*(oTl,d12 ,oy6) is

dominated by the weakest value among Fl*(ul), F2*(cT 2), and F6 *(cY6 ) so

F*(al, 92 ,a6 ) is always shown on the top of each of graphs as shown in Figures

3-10a and 3-10b. Figures 3-8a through 3-8b show the reliability for different

values Of C1 2 when al, a2' C1 6 is fixed. These figures are expanded to three

dimensional space as shown in Figure 3-9.

LINEARIZED FAILURE CDF (Cl 2=O.5,C1 6=1)
(Al =25,A2=5,A6=3)

100~

0*
E o F1*

0 F2*

* + F*

-100

-8 -6 -4 -2 0 2

ln(sigmal/betal)

Figure 3-10a .Linearized Failure CDF (012=0.5, 016=1)
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LINEARIZED FAILURE COF (C12=Cl 6=1)
(Al =25,A2=5,A6=3)

100 -

E 0 F1*
*F2*
aF3*
+F*

-8 -6 -4 -2 0 2

Iri(sigmal/betal)

Figure 3-10b Linearized Failure ODF (012=016=1)
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As a special case, when a=Ox=z 2 =a 6 , then the joint reliability and

linearized failure CDF functions can be simplified by

P (Y) 2 'G 6) =exp- '1 (+C 2 +C6)} (3-22)

F6( 26 ) = 42 n(c 3) +

6Y6 16)+(3-23)

F*al,( G2o) +In + 12 + 16)
1 , 6) o I(3 -2 4 )

Observing Equations (3-22) through (3-24), it can be noted that F1 *(31),

F2*(a2), F6 *(o 6 ), and F*(a ,Y2 ,06) are parallel each other. And the Joint

linearized failure CDF, F*(l ,X2,o 6), is also affected by the largest function

among F1 *, F2 *, and F6 *. The parameter a is related to the rotation whereas

C 1 2 and C16 are related to the vertical shift of the graph.
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IV. PROBABILISTIC FAILURE CONTOUR UNDER COMBINED STRESS

A. PROBABILISTIC FAILURE

For a combined stress failure mechanism, when one stress component does

not affect the strength of another component, failure is mechanistically

uncoupled, as shown in Figure 4-1. When one stress component affects the

strength of another component, failure is then mechanistically coupled, as

shown in Figure 4-2.

S 0 2

/

Figure 4-1 Mechanistically Uncoupled Mechanism

49



92

G

Figure 4-2 : Mechanistically Coupled Mechanism

If the probablistic failure is considered, the mechanistically uncoupled case

may contribute to statistical coupling so both failure mechanisms are not

interacting and the probablistic failure mechanism is distinguished from the

deterministic case. In order words, the condition for the failure mechanism is

not fixed, it depends on the stochastic combinations of the intrinsic strengths.

So, for the combined stress case, uncoupled independent statistical effects

produce phenomenologically coupled statistical contours and the mechanically

coupled dependent statistical effects also produce phenomenologically coupled

statistical contours. In the following subsection, the joint probabilistic failure
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CDF will be discussed for the two and three random variable cases and the

effects of the parameters will be shown graphically.

B. Two Random Variable Case

To show the joint failure probability, we here introduce the Weibull

distribution function. From Equation (2-62), the joint failure distribution function

can be obtained for the two random variable case.

F(a1 a 2 ) =1-exp - - P, 02(2-62)

From the above equation, (a1/131 ) and (02/D32) can be computed if the values

of F(a 1 ,a2 ) and C1 2 are given. Figure 4-3 shows the joint failure CDF in three

dimensional space and Figure 4-4 shows corresponding joint failure contour in

two dimensional space for the specific value of F. As shown in Figures 4-3 and

4-4, the shapes of the failure function and failure contour depend on the

parameter ax, which is material dependent. For a small value of a, the failure

contour shows a smooth curve but as the value of a increases, the joint failure

contour approaches to the shape of a rectangle. This phenomenon is the same

for the joint reliability contour as shown in Figure 4-5. It can also be noted that

the failure contour is affected by a large value of a between a1 and ax2 . So if

anyone of the values of a is larger when compared to another value of a, then

the failure contour approaches to the shape of a rectangle, depending on the

magnitude of a. These relations are shown in Figures 4-6 and 4-7. Another

result, shown in these failure contour graphs, is that the distance between the

contour line is small when a is large compared to those when a is small. So the

intersection of the function on both axis depends on the value of each a.
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Figure 4-3a Joint Failure CDF In 3-0 (ca1=cz2=5)
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Al=A2=25

Figure 4-3b Joint Failure CDF In 3-D (cz1=cc2=25)
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1.00

00.0

0.50

0.00 0.50 1.00 1.50

Figure 4-4a Joint Failure Contour (ci1=cx2=5)
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0.1 0.1
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0.001I I I I I I
0.50 1.00

Figure 4-4b Joint Failure Contour (cxI=c 2=25)
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Figure 4-5a Joint Reliability Contour (aI=c12=5)
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0.50 A1=A2=25

0.00 
10.00 0.50 1.00

Figure 4-5b Joint Reliability Contour (ccl=cx2=25)
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The contour line of F(cy1 ,2) =0.5 exists around 1.0 in both the normalized x

and y axis regardless of a, but as a increases, the F=0.5 contour line

approaches to 1.0 in both normalized axis.

Al=5,A2=3

Figure 4-6a Joint Failure CDF (cix=5,c 2=3)
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Figure 4-6b Joint Failure ODF (ccj=25,ca2=3)
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As an application, if we compute the stress of a specific part of system such

as a rudder or ailerons using the finite element method, then we can estimate

the probabilistic failure and reliability of that specific part of the system.

The parameters (x and P], which were used in the failure CDF and reliability

function, are material dependent so these values should be determined through

experimentation and then these parameters can be applied for that specific

material.

2.00

Al=5,A2=3

1.50

_0.9

1.00

0.S

0.50

0 . 0 I 1I I I I I I I i I I I ] II I |I I I I I l I I J I i 1 I]

0.00 0.50 1.00 1.50 2.00

Figure 4-7a Joint Failure Contour (cc1=5,(x2=3)
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0.50 0.1

00.00

0.00 0.50 1.00

Figure 4-7b Joint Failure Contour (cxj=25,cx2=3)
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C. THREE RANDOM VARIABLE CASE

If the three random variable case is considered, the joint failure CDF can be

developed using Equation (2-63).
1 )2 2 G 6

F ( 0 11 2 1 C 6 ) = 1 e x p { - i" - 2

Al =25,A2=5,A6=3

Figure 4-8a. int Failure CDF (C16=1)

62



Al =25,A25,A6=3

Figure 4-8b Joint Failure CDF (C1 6=3)
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From the above equation, normalized axis coordinates can be computed if

the values of F(@1 , c2' Y6), C1 2, and C16 are given. And if we specify the value

of C16, then we can plot the joint failure CDF in three dimensional space with

respect to al/0 1 and o2 /D32 as shown in Figure 4-8. As the value of C1 6

increases, the possibility of failure increases, that is to say, the intersection on

the normalized x-axis moves to the left because oy6/06 term is embedded in the

-l/p31 axis. Figure 4-9 shows the corresponding failure contour line in two

dimensional space for the specific value of F(o 1 , G2 , y6).

1.50

A1 =25,A2=5,AG=3

0.9

1.00

_ 0

0.50

0.00 0.50 1.00

Figure 4-9a Joint Failure Contour (C16=1)

64



As proven graphically in the three random variable case, the probability of

failure increases as the number of random variables increase. So in a physical

sense, a specific composite material will show the highest reliability when the

external loads are applied in the pricipal axis direction because there are only

two random variable, X1 and X2 , in the reliability fuction. But when the external

loads are applied in the off-principal axis direction, there exist some shear force

random variable, X6 , which decreases the reliability of the material.

1.50

AI=25,A2=5,A6=3

1.00

! 0

0.50

0.00 0 T0.00 0.50 1.00

Fig. 4-9b Joint Failure Contour (C12=3)
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As an application, if the stress of the maneuvering aircraft is computed in an

arbitrary direction, then the stress can be transformed into fiber, shear, and

transverse matrix directions which can then be used to predict the probability of

failure at that specific load. Sample calculations were made and the results

were analyzed with respect to experimental data in Appendix B.
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V. CONCLUSIONS

This study was directed towards deriving the joint reliability and joint failure

CDF under a combined stress condition. The results were specialized for the

Weibull distribution function based on the observations that the composite

material failure is adequately represented by the weakest link model. The effect

of the statistical strength parameters, a and 3, which are material dependent are

illustrated using two and three dimensional graphical representations.

To analyze the reliability of the composite, the inherent statistical strength

parameters in the composite's principal direction need to be experimentally

measured. Substitution of these parameters in the probabilistic failure criterion

will allow for the estimation of the reliability of the composite for any state of

stress.

Comparison of joint failure distribution under the restriction of independence

to experimental data suggests that mechanistic coupling of the failure

mechanism needs to be included in future extensions of the formulation and

data of much larger number of samples has to be performed at critical stress

ratios to conclusively examine probabilistic independence.

Further studies may be extended to apply these reliability and failure CDF to

the specific part of a system which is made of a composite material. To do this,

the stress of the specific part of a system such as an elevator or ailerons should

be analyzed using such as finite element method. These equations can also be

used in a repair problem which requires the least cost and most effective

method to analyze the combined stress in a specific part of a system.
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So, if we analyze the combined stress, the appropriate fiber and matrix with

proper parameters can be selected to make the composite fit to that specific

part.
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APPENDIX A

Chapter II Equations

1. For the independent case:

P(X 1 +X2 : X1 <c, X2 50 2) = P(X4 501) + P(X 2 a2 ) - P(X 1 <.a1) P(X 2 < 2 )

= F1 (al) + F2 (G2 ) - F1 (al) F2 (02 )

If the Weibull distribution function is considered, F1 (01) and F2 (aT2 ) can be

substituted into the Weibull distribution function:

P(X1+ x 2:X1  ,  _  2= < ex{<a}I [ - + exp { - 2) 2

0' a

+ iexp { (-i 1Iexp{ D Y2}]

By expanding and simplifying
1 2

P(X+X 2 :X 1 1 X e x p  2

which is the same result as the Equation (2-32)

2. For the independent case:
a : ju-flu)f 2 (v)dv.du + f J"2{vff 2 (v)du dv

o 12  o 1_

Taking the integrals inside the parenthesis first and substituting limits upon

evaluation:

F(0 1'0 2) = fo u){F 2( < ) - F2( 2j" du
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+ f 0 2f 2(v){F 1 (o) - F1( 12v)}dv

F (,) = f f1(u)du, F2 (o) = J f 2 (u)du
0 0

Noting F1(c) = F2 (-) = 1 from the definition of CDF and expanding
a a

F(l, o2 )=:J" f 1(udu-J" f',(uF 2(B-1)clu

+ f f 2(v)dv - f 2f 2(v)F(B 12v)dv
o 0

Taking integrals and noting that F1 (0) = F2 (0) = 0
a

F(Ci, 2 F1(a,1) + F2 (0 2 ) - .f If1(u)F 2 (. A-)du

f 0f 2(v)F,(B 12v)dv

3. From Equation (2-33a)

g(l, a 2) = 2F(a) - 2 ff (u)F(u)du
0

By integration by parts

F(0l, 2) = 2F(a) - 2 F(a)}2- fff(u)F(u)du]

noting

f (u)F(u)du = 0.5{F(O)}
0

then the joint distribution function for independent case can be obtained by

F(a 1 ,a2) = 2 F( )- {F()} 2
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4. By expanding and integrating

0 [-exp{- Ua + [uC: jexp 2 ( 2  }

22
x (u ex-+

exp{- ( 2 +[ a Jexp{- ( !12v~}]

By substituting and expanding

F( 1 , a 2)= 1- exp{-/(!/j}] + -exp{-

+ Iexp{- P - - +-- jeX{ a -

B12 +lJ

a 12, I

By rearranging terms and simplifying

F(, 2)=1BC2 ' ex -12

-iB:+ 12exp{ - -  ) (B 2a}

noting al = B12a 2 , then the joint distribution function of the Weibull model

under bi-axial stress a1 and a2 can be simplified by
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F(G1,a 2 = 1-ex P{ _(,,,,a _j(z2)a

5. From Equation (2-50)

R(Y G ~2) = fJfFf 1(u)f 2(v)dudv
2 1

- J{F ( ) - Fl(ol) }f 2 (v)dv
2

noting F1(o) = F2 (oo) = 1

,,a2) = {1 - Fl()}If 2 (v)dv

integrating then we finally got the Equation (2-57):

R(a1 ,02) = {1 -F1 (a)}{1 -F2 (G)}
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APPENDIX B

Structural Applications

In many structural applications for aircraft, the composite laminae are

oriented at an angle to the tensile load. Take for example the skin on a wing,

where the filament angle is oriented primarily along the direction of tension due

to bending. Transforming the stress by an angle 6 to an off-axis introduces a

shear coupling that will compensate for the bending/rotational coupling of a

swept wing. Such a material loading relation is representative of that indicated

in Figure B-I. We will explore the combined stress state for such a

configuration and the structural reliability as affected by the off-axis angle 6.

Since we are addressing a spatially homogeneous state of stress, both stress

analysis and the substitution of the combined stress in the probabilistic failure

criterion can be carried out explicitly.

X2 '

X 2 XlI

×1' 0 P

Figure B-1 Transformation Of Coordinates
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For the stress analysis, a load p is applied to the composite material and we

denote the direction of p to be x1 ' , then p can be transformed to the principal

direction of the composite; xi and x2 where

x1 : fiber direction

x2 transverse matrix direction

and the angle between x1' and x1 -axis can be defined as 8 which is positive

clockwise. Using the tensor relation, the stress can be transformed from xl ' ox 2 '

axis to xi -x 2 axis as follows:

a ij = ami anj Gumn' (B-i)

where

i, j, m, n = 1, 2 for 2-dimension

c 2 2'=0 12 ' = 02 1'= 0

aij = cos(xl', x1) cos(xl', x2) /  =(cos(O) -sin(O)

cos(x2', x1) cos(x2',x2) sin(O) cos(O) (B-2)

Expanding Equation (B-1) for G1 1, (Y12, a 22 , then

a, I = aml ani (Gmn'

=all all 1'+al1 al Y12 ' + a21 a12(Y2 1'+a21 a21 a2 2 '

= a212 ca1'

a, I = p cos2(0) (B-3)

For the same reason

0 12 = -p cos(O) sin(O) (B-4)

a22 = p sin(O) (B-5)

To calculate the reliability associated with the applied load p, the stress

components in terms of p (Equations (B-3), (B-4), and (B-5)) can be substituted

into Equation (2-83) to find the joint failure CDF for the specified external load p.

74



We note that Equation (2-83) is specialized for the case that the effect of (11,

Y12, and 0Y22 on the respective failure modes are independent. Substitution

yields:

_pos2( Psin 2 (, _ 1pcos(O)sin(O)

(B-6)

where

'91 = (11, c2 = (122, (16 = (Y12

Comparing Equation (B-6) to (2-83) and (3-18), it can be noted that

B12 = cot 2 (0), B16 = -cot(0)

C12 = V1 2 tan2 (0), C16 = -V1 6 tan(0)

This joint failure CDF in terms of p and 0 can be plotted in terms of p for an

specified 0. Similarly, from the Equation (B-6), the linearized failure CDF can be

obtained by

a' a 2 a 1
(pO)n pcos() psin 2(0) } { pcos(e)sin(0) 6

(B-7)

In order to investigate the dependency of the failure mechanism,

experimental data from Sun and Yamada [Ref. 4] is examined. From the

experiment, the following parameters were obtained for fiber, transverse, and

shear force using uni-axial tests.

oX I = 20.5, P I = 127000

ox2 = 5.66, P2 = 1070

ox6 = 8.96, 6 = 3078

Substituting these strength parameters into Equations (B-6) and (B-7), the

75



probability of failure for load p applied to different angles can be examined.

Figures (B-2a) through (B-6b) compare the joint failure CDF to the experimental

data for different angles. These data will be examined individually for each of

the five angles where experimental data is available.

1.00*

L- 0.75 //,
IL/

/ Transverse
0 Shear

0.50 Joint CDF

- / U Experiment

.0 /

o 0.25 /

000
6000 8000 10000 12000 14000

Stress

Figure B-2a :Comparison Of Experimental Data with

d,'int Failure CDF For Independent Case (15 Deg.)
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At 0 = 150, even when the load is closely aligned with the fiber angle, Figure

B-2a shows that the fiber strength statistics has no effect on the combined

failure probability by noting that the fiber failure curve is off-scale for the high p

region. That is, the failure is always dominated by a combination of matrix

transfer strength and the matrix shear strength. The interaction of transverse

and shear can be better observed in the linearized Weibull plot, Figure B-2b,

from which it can be seen that in the lower tail (low p region) the transverse

strength dominates and in the upper tail (high p region) the shear strength

dominates.

0.50-

UU
a) U

- -2.00 -,Transverse
O Shear

-- Joint CDF
. Experrment

•M. -4.50 -.0

-7.00

8.9 9.0 9.1 9.2 9.3 9.4

Ln(Stress)

Figure B-2b Comparison Of Experimental Data With Joint

Failure CDF For Independent Case (Linearized, 15 Deg.)
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While the experimental data are not close to the predicted joint failure CDF

under the simplification of independence, its significance can not be evaluated

because of the small sample size. With the eight samples in the current case,

neither the upper tail nor the lower tail can be observed,thus the failure

probability coupling remains unresolved. The location discrepancy perhaps

has more significance. It suggests that combined transverse and shear

stresses have weakened the composites and that the failure mechanistic

coupling needs to be treated.

1.00

0.75-

LL •Transverse
0 Shear

0.50 • Joint CDF

>, /s • Experment

,.0

o 0.25-

0.00•
4000 6000 8000 10000

Stress

Figure B-3a Comparison Of Experimental Data With

Joint Failure CDF For Independent Case (20 Deg.)
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At 0 = 230°, Figures B-3a and 3b show that even with a slight angle change of

50, the effect of the shear component diminishes rapidly. The transition region

has shifted higher on the upper tail. Physically, it means that unless a large

number of samples are tested, only the strongest of the samples will fail in

shear, and the remaining will fail by transverse stress. For this reason, and

again because of the small number of samples, the shape indicated by the

experimental data has no significance. The location difference between the

data and prediction suggests that mechanistic coupling needs to be included.

1.5

0.5 -

-0.5 -
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" - Experiment

-2.5
.0
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-4.5 -

8.45 8.55 8.65 8 7 8.85 8.95

Ln(Stress)

Figure 3-3b Comparison Of Experimental Data WithJoint

Failure CDF For Independent Case (Linearized, 20 Deg)
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At 0 = 300, Figures B-4a and 4b show that the effect of shear is shifted to

even a higher upper tail. All comments on 0 200 data apply to 0 = 300 as well.

1.00-

0.75
2U

U-

Transverse
0 0.50o Shear

Joint CDF
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0.00
2000 3000 4000 5000
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Figure B-4a Comparison Of Experimental Data With

Joint Failure CDF For Independent Case (30 Deg.)
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Figure B-4b Comparison Of Experimental Data With Joint

Failure CDF For Independent Case (Linearized, 30 Deg.)
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At 0 = 45 0 ,Figures B-5a and 5b show that the effect of shear is practically

nonexistent; in fact, it can not be observed from the range of the scale

presented. What is significant is the location of data is below the location of the

joint CDF suggesting mechanistic coupling.

1.00

0.75-

I.. U

0 Transverse
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Figure B-5a : Comparison Of Experimental Data With Joint

Failure CDF For Independent Case (Linearized, 45 Deg.)
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Figure B-5b :Comparison Of Experimental Data With Joint

Failure CDF For Independent Case (Linearized, 45 Deg.)
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At 0 = 600,Figures B-5a and 5b show that the effect of shear is no longer

present and that the fit of the data is much improved. The latter observation

further substantiates the existence of mechanistic coupling.
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Figure B-6a : Comparison Of Experimental Data With

Joint Failure CDF For Independent Case (60 Deg.)
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Figure B-6b Comparison Of Experimental Data With Joint

Failure CDF For Independent Case (Linearized, 60 Deg.)
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From the experimental data available in the open literature, it was observed

that a much larger number of samples are required to identify the probabilistic

coupling and dependency of strength. What is evident is that mechanistic

coupling needs to be included as an extension to the investigation herein.

Furthermore, experimental design using the probability failure criterion is

mandatory to optimize experimental testing.
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